Newly discovered remains of ancient river landscapes control ice flow in East Antarctica
Peer-Reviewed Publication
Updates every hour. Last Updated: 15-Sep-2025 07:11 ET (15-Sep-2025 11:11 GMT/UTC)
The remains of landscapes thought to have formed when ancient rivers flowed across East Antarctica have been discovered – and could help predictions of future loss from the ice sheet.
The azuki bean beetle is a common pest of stored beans and peas. Researchers at Kyushu University have found that when beetles infected with Wolbachia bacteria are exposed to elevated temperature and carbon dioxide they tend to produce larger eggs to enhance the survivability of their offspring. Interestingly, these larger eggs gave rise only to male larvae.
The environmental impact of nine pesticides, commonly used in grape cultivation, may have been significantly underestimated, suggesting current pesticide risk assessment criteria need updating.
Researchers have conducted an integrated geochronological and geochemical study of mafic rocks in the Wutai Complex, North China Craton, revealing key insights into the Neoarchean–Paleoproterozoic tectonic evolution of the Trans-North China Orogen. The ~2.54 Ga Nb-enriched gabbros originated from a depleted mantle wedge metasomatized by slab-derived melts, while the ~2.08 Ga amphibolites formed from partial melting of a spinel-garnet lherzolite source influenced by both slab-derived fluids and sediment melts. These results indicate a tectonic transition from Late Archean subduction to Paleoproterozoic lithospheric extension, providing compelling evidence that plate tectonics likely initiated at least partly during the latest Neoarchean. (Reference: Asim et al., 2025, Cont. Life Evol., https://doi.org/10.55092/cle20250001)
Severe weather events, such as heavy rainfall, are becoming increasingly commonare on the rise worldwide. Reliable assessments of these events can save lives and protect property. Researchers at the Karlsruhe Institute of Technology (KIT) have presented developed a new method that uses artificial intelligence (AI) to convert low-resolution global weather data into high-resolution precipitation maps. The method is fast, efficient, and independent of location. Their findings have been published in npj Climate and Atmospheric Science: https://doi.org/10.1038/s41612-025-01103-y