Pusan National University researchers identify the brain enzyme that drives nicotine addiction and smoking dependence
Peer-Reviewed Publication
Updates every hour. Last Updated: 16-Dec-2025 11:12 ET (16-Dec-2025 16:12 GMT/UTC)
Nicotine addiction remains one of the most persistent global health challenges, yet the cellular mechanisms underlying it are less explored. Now, researchers have discovered that astrocytes, glial cells in the brain thought to play only a passive role, actively contribute to the brain changes triggered by repeated nicotine exposure. The findings provide insights into nicotine-induced changes in the brain by an enzyme that regulates a key glutamate-related pathway linked to sensitized behavior.
A new hydrogel-based breakthrough is transforming extracellular vesicle research. Using meso–macroporous PEGDA hydrogels with ~400 nm pores, researchers can now isolate EVs directly from raw biofluids like blood, urine, milk, and more without preprocessing or specialized equipment. The method is faster, scalable, and highly efficient, yielding up to 1,500× more for milk EVs than traditional techniques. Beyond isolation, EVs can be preserved, enriched, and applied in diagnostics, therapeutics, and industrial-scale research.
Smart polymers change their properties in response to temperature, stress, or other stimuli, making them useful in drug delivery and soft robotics. But a major hurdle has been understanding how they behave when flowing or being stretched—conditions they face in real-world use. Now, researchers from Tokyo University of Science have developed a custom rheo-impedance device that provides the first look at these details, paving the way for more reliable and responsive smart materials.
MIT researchers evaluated two approaches to expanding the U.S. electricity grid: creating more interconnections across the country vs. focusing on regions with more renewable energy. They found each has tradeoffs in terms of reliability, cost, and emissions.
Kyoto, Japan -- "Why are we here?" is humanity's most fundamental and persistent question. Tracing the origins of the elements is a direct attempt to answer this at its deepest level. We know many elements are created inside stars and supernovae, which then cast them out into the universe, yet the origins of some key elements has remained a mystery.
Chlorine and potassium, both odd-Z elements -- possessing an odd number of protons -- are essential to life and planet formation. According to current theoretical models, stars produce only about one-tenth the amount of these elements observed in the universe, a discrepancy that has long puzzled astrophysicists.
This inspired a group of researchers at Kyoto University and Meiji University to examine supernova remnants for traces of these elements. Using XRISM -- short for X-Ray Imaging and Spectroscopy Mission, an X-ray satellite launched by JAXA in 2023 -- the team was able to perform high-resolution X-ray spectroscopic observations of the Cassiopeia A supernova remnant within the Milky Way.
Calcium (Ca) plays a fundamental role in carbonate weathering and the global carbon cycle. Carbonate weathering contributes approximately 80% of the dissolved Ca flux delivered from global rivers to the oceans. Therefore, it is crucial to elucidate the geochemical behavior of Ca isotopes during carbonate weathering. The research group led by Prof. Han Guilin at the China University of Geosciences (Beijing) integrated multi-isotope datasets (including Li-K-Fe-Zn) to investigate the geochemical behavior of Ca isotopes in river water and suspended sediments of the Lancang River during carbonate weathering. This work provides new insights into the global C-Ca cycle. The related findings have now been published in Science China Earth Sciences in 2025.