Pushing boundaries in ultrafast magnetization switching
Peer-Reviewed Publication
Updates every hour. Last Updated: 7-Oct-2025 22:11 ET (8-Oct-2025 02:11 GMT/UTC)
Water is one of the most familiar substances on Earth, yet its behavior under extreme confinement remains poorly understood. In a recent study, researchers from Japan revealed how water confined within nanopores can transition into a unique ‘premelting’ state, behaving partly like ice and partly like liquid water. Using static solid-state deuterium nuclear magnetic resonance spectroscopy, the researchers identified hierarchical molecular structure and uncovered dynamic properties with potential applications in energy storage and materials science.
Researchers at the Fritz Haber Institute of the Max Planck Society, in collaboration with the Max Planck Institute of Chemical Energy Conversion and Clariant have unveiled new insights into the complex catalyst systems used in industrial ammonia production. By examining the structural evolution of these catalysts, the study highlights the critical role of promoters in enhancing performance and stability.
Ice can dissolve iron minerals more effectively than liquid water, according to a new study from Umeå University. The discovery could help explain why many Arctic rivers are now turning rusty orange as permafrost thaws in a warming climate.
A novel class of light-sensitive nanoparticles may one day enable new approaches to medical imaging. They were developed by a research team at Martin Luther University Halle-Wittenberg (MLU). The particles absorb laser light and convert them into heat thereby changing their internal structure, similar to folded proteins. The research was published in the journal “Communications Chemistry”.
A new tool called SCIGEN allows researchers to implement design rules that AI models must follow when generating new materials. The advance could speed the development of materials that enable technological breakthroughs.