Scientists unveil mechanism behind greener ammonia production
Peer-Reviewed Publication
Updates every hour. Last Updated: 24-Nov-2025 10:11 ET (24-Nov-2025 15:11 GMT/UTC)
Tokyo, Japan – Researchers from Tokyo Metropolitan University have revealed how a catalyst in a promising chemical reaction for industry helps make ammonia, a major ingredient in fertilizer. Copper oxide is a key catalyst in the electrochemical nitrate reduction reaction, a greener alternative to the existing Haber-Bosch process. They discovered that copper particles are created mid-reaction, helping convert nitrite ions to ammonia. This insight into the underlying mechanisms promises leaps forward in developing new industrial chemistry.
A joint research team from NIMS and Toyo Tanso has developed a carbon electrode that enables stable operation of a 1-Wh-class stacked lithium-air battery, achieving higher output, longer life and scalability simultaneously. The team created this electrode by combining manufacturing technology that Toyo Tanso developed for its “CNovel™” porous carbon product with proprietary technology NIMS developed to fabricate self-standing carbon membranes. This combination made it possible to scale up the battery cell size—a significant step toward practical, industrial-scale lithium-air batteries. The research was published online in Cell Reports Physical Science on September 18, 2025.
Current antibody-based treatments for Alzheimer’s disease remain costly and carry significant side effects, highlighting the need for safer alternatives. In a new study, researchers from Kindai University report that oral administration of arginine suppresses amyloid-β aggregation and related neurotoxicity in fruit fly and mouse models of Alzheimer’s disease. Their findings demonstrate arginine’s potential as a safe, inexpensive, and readily available repositioned drug candidate for preventing or mitigating Alzheimer’s pathology.
Excessive screen use among school-aged children has been linked to sleep disturbances and behavioral problems, but its effects on brain development have remained unclear. Now, researchers from Japan have examined data from over 11,000 children to explore the relationship between screen time, attention-deficit/hyperactivity disorder (ADHD) symptoms, and brain structure. Their findings reveal that longer daily screen exposure is linked to increased ADHD symptoms and measurable changes in brain development.
A research team led by Professor Eijiro Miyako at the Graduate School of Advanced Science and Technology, Japan Advanced Institute of Science and Technology (JAIST), has discovered that the marine bacterium Photobacterium angustum demonstrates remarkable therapeutic efficacy against colorectal cancer.
Through screening of multiple marine bacterial strains, the researchers found that P. angustum, in its natural, non-engineered form, selectively accumulates in tumor tissues and induces both direct tumor lysis and robust immune activation. In mouse models, intravenously administered P. angustum showed high tumor tropism while exhibiting minimal colonization of vital organs except the liver, with no hematological abnormalities or histological toxicity observed.
Furthermore, P. angustum therapy promoted intratumoral infiltration of immune cells including T cells, B cells, and neutrophils, and enhanced production of inflammatory cytokines such as tumor necrosis factor-α (TNF-α) and interferon-γ (IFN-γ). The bacterium also demonstrated intrinsic oncolytic activity through natural exotoxin production, directly destroying cancer cells. These combined mechanisms significantly prolonged survival in treated mice, with complete remission achieved in some cases.
This research represents a critical advance toward developing safer, more biocompatible cancer immunotherapies that do not rely on genetically modified organisms (GMOs).
The study has been accepted for publication in the Journal for ImmunoTherapy of Cancer, a leading international journal in the field of cancer immunotherapy.
Researchers have developed a new culture medium for canine iPS cells, enabling their stable differentiation into cardiomyocytes.
Selenium-based compounds play vital roles in human and animal health; however, accurately detecting their various forms has long been a challenge. Researchers from Chiba University have developed a new method that uses selenium’s unique isotopic “fingerprints” to identify its compounds with high precision. Using this approach, they discovered previously unknown selenium molecules produced by gut bacteria. This technique could contribute to the fields of biology, helping deepen our understanding of selenium’s functions in the body.
Dance is a form of cultural expression that has endured all of human history, channeling a seemingly innate response to the recognition of sound and rhythm. A team at the University of Tokyo and collaborators demonstrated distinct fMRI activity patterns in the brain related to a specific audience’s level of expertise in dance. The findings were born from recent breakthroughs in dance motion-capture datasets and AI generative models, facilitating a cross-modal study characterizing the art form’s complexity.