6G Professor Mehdi Bennis named among world’s Highly Cited Researchers for sixth consecutive year
Grant and Award Announcement
Updates every hour. Last Updated: 23-Nov-2025 20:11 ET (24-Nov-2025 01:11 GMT/UTC)
Mehdi Bennis, Professor at the University of Oulu Finland and leading researcher at 6G Flagship, has been named one of the world’s Highly Cited Researchers for the sixth year in a row. The annual recognition by Clarivate identifies researchers whose work has consistently shaped the direction of scientific progress, placing them among the top 1% most cited by field and publication year.
A research team in South Korea has successfully developed a novel technology that combines nanoparticles with stem cells to significantly improve 3D bone tissue regeneration. This advancement marks a major step forward in the treatment of bone fractures and injuries, as well as in next-generation regenerative medicine.
Dr. Ki Young Kim and her team at the Korea Research Institute of Chemical Technology (KRICT), in collaboration with Professor Laura Ha at Sunmoon University, have engineered a nanoparticle-stem cell hybrid, termed a nanobiohybrid by integrating mesoporous silica nanoparticles (mSiO₂ NPs) with human adipose-derived mesenchymal stem cells (hADMSCs). The resulting hybrid cells demonstrated markedly enhanced osteogenic (bone-forming) capability.
Scientists at The University of Osaka developed a new 3D culture scaffold by integrating the strong cell-adhesive domain of laminin-511 into a clinically used fibrin gel, creating a chimeric protein called Chimera-511. This laminin-functionalized fibrin gel supports efficient 3D expansion of human iPS cells while maintaining pluripotency. As a chemically defined, xeno-free material, it offers a promising alternative to Matrigel and a potential platform for clinically applicable organoids and regenerative therapies.
Professor Zhongkui Zhao of Dalian University of Technology, in collaboration with Professor Riguang Zhang of Taiyuan University of Technology, Researcher Yuefeng Liu of the Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Professor Ting Zhang of Qingdao University, and Professor Chunshan Song of the Chinese University of Hong Kong, constructed a single-atom Cu-N2O1 site with axial oxygen coordination on C3N4. Through the polar activation of the CH bond by the polar Cu-O bond, they successfully pioneered a new photocatalytic methane upgrading strategy independent of reactive oxygen species. This strategy not only significantly increased the rate of photocatalytic methane conversion to ethanol by 226 μmol/g/h under mild conditions, but also achieved an ethanol product selectivity as high as 98%. This achievement not only greatly advances the basic understanding of photocatalytic methane conversion to ethanol, but also creates a new paradigm for photocatalytic methane upgrading, successfully solving the seesaw dilemma between the liquid fuel generation rate and its selectivity in the photocatalytic methane conversion process, and providing new ideas and methods for the innovative development of future photocatalytic methane conversion. The article was published as an open access research article in CCS Chemistry, the flagship journal of the Chinese Chemical Society.