Martian dust could pose health risks to future astronauts
Peer-Reviewed Publication
Updates every hour. Last Updated: 21-Jul-2025 23:10 ET (22-Jul-2025 03:10 GMT/UTC)
Researchers at the Hong Kong University of Science and Technology (HKUST) have developed a cutting-edge AI-assisted 3D food printing solution that combines printing with infrared cooking, paving the way for safer, more efficient, and visually appealing food production.
A Chinese research team has successfully developed a triplex real-time quantitative fluorescence PCR method capable of simultaneously detecting three critical drug resistance genes—mcr-1, vanA, and blaNDM-1. This method demonstrates high sensitivity, strong specificity, and excellent reproducibility, offering an efficient tool for rapid detection of drug resistance genes in clinical and food safety applications.
Bone adapts according to the mechanical environment, and this adaptation can be visualized by altering its shape, size, and microarchitecture. Bone adaptation was recognized more than a century ago, with a description presented in The Law of Bone Remodeling. Furthermore, the conceptual model of “The Mechanostat” provides a quantitative relationship between the magnitude of bone tissue deformation (strain) and bone adaptive responses. However, upon maintaining a constant strain magnitude, various bone responses were observed experimentally under different loading parameters (e.g., frequency, rate, number of load cycles, rest insertion, and waveform). Nevertheless, the precise relationship between mechanical signals and bone adaptation remains unclear. Accordingly, we reviewed in vivo loading studies to determine the quantitative relationships between various mechanical signals and bone adaptive responses in various animal loading models. Additionally, we explored how these relationships are influenced by pathophysiological factors, such as age, sex, and estrogen deficiency. Moreover, mechanistic studies that consider cellular mechanical microenvironments to explain these quantitative relationships are discussed. A general formula that considers the bone adaptive response as a function of different loading parameters was proposed. This review may enhance our understanding of bone adaptation and offer guidance for clinicians to develop effective mechanotherapies to prevent bone loss.
Researchers have developed new AI models that can vastly improve accuracy and discovery within protein science. Potentially, the models will assist the medical sciences in overcoming present challenges within, e.g. personalised medicine, drug discovery, and diagnostics.