Deformable particles gradually home in microfluidic channels
The University of OsakaPeer-Reviewed Publication
A joint team has uncovered how soft, deformable particles, like cells, behave in microfluidic channels. Using precisely fabricated hydrogel particles and simulations on the supercomputer "Fugaku," they demonstrated that particle softness dramatically alters their focusing patterns, deviating significantly from rigid particle behavior. These findings reveal distinct "phase transitions" in focusing, shifting from mid-edge to eight-point, diagonal-edge, and finally center focusing as deformability increases. This breakthrough, explained by a new theoretical model incorporating inertia and deformability, offers crucial insights for designing next-generation microfluidic devices for highly efficient cell sorting and other biomedical applications like early cancer detection. The ability to control particle focusing based on deformability opens exciting possibilities for advanced particle manipulation and separation technologies.
- Journal
- Journal of Fluid Mechanics
- Funder
- Japan Society for the Promotion of Science, Japan Science and Technology Agency