Surging Himalayan rivers bring benefits and risks to local communities
Peer-Reviewed Publication
Updates every hour. Last Updated: 13-Sep-2025 19:11 ET (13-Sep-2025 23:11 GMT/UTC)
Harvard SEAS and University of Chicago researchers have tested and validated lightweight nanofabricated structures that can passively float in the mesophere, which is about 45 miles above Earth’s surface. The devices levitate via photophoresis, or sunlight-driven propulsion, which occurs in the low-pressure conditions of the upper atmosphere.
A team led by researchers from the University of Washington used a fiber-optic cable to capture calving dynamics across the fjord of the Eqalorutsit Kangilliit Sermiat glacier in South Greenland. Data collected from the cable allowed them to document — without getting too close — one of the key processes that is accelerating the rate of glacial mass loss and in turn, threatening the stability of ice sheets, with consequences for global ocean currents and local ecosystems.
An international team of researchers led by the University of Massachusetts Amherst has tracked changes in more than 114,000 rivers in High-mountain Asia over a 15-year period. The paper, published in AGU Advances, reported that nearly 10% of these rivers saw an increase in flow, with an increasing proportion of that water coming from glacial ice melt compared to precipitation.