Positive charges stabilize instantly in key solar fuel catalyst: New simulations track ultrafast polaron formation in NaTaO3.
Peer-Reviewed Publication
Updates every hour. Last Updated: 15-Dec-2025 22:11 ET (16-Dec-2025 03:11 GMT/UTC)
To boost solar water splitting efficiency, researchers used quantum molecular dynamics to track how charge carriers (polarons) stabilize in the NaTaO3 photocatalyst, a process previously hidden from experiments. They discovered that positive hole polarons stabilize strongly and rapidly (~70 meV in 50 fs) driven by the elongation of oxygen-tantalum (O-Ta) bonds, while electron stabilization is insignificant. This time-resolved, atomistic understanding provides crucial guidelines for rationally engineering O-Ta bond dynamics to create high-performance solar fuel catalysts.
Associate Professor Jing Yu (Tsinghua University), Professor Huajian Gao (Tsinghua University), and Dr. Quan Chen (Changchun Institute of Applied Chemistry, Chinese Academy of Sciences) recently developed a class of supramolecular elastomerswith high mechanical properties and efficient chemical recovery, called BNOSE, that are based on boron-nitrogen (B–N) and boron-oxygen (B–O) dynamic bonds. The dynamic B–N and B–O bonds in BNOSE provide robust interchain forces and degradation in mild ethanol solvents, resulting in a material with excellent mechanical properties and chemical recovery. Having a tensile strength of over 43 MPa and a toughness above 121 MJ/m³, BNOSE outperforms the vast majority of commercial elastomers and existing chemically recovered thermoplastic elastomers. BNOSE offers a sustainable solution without sacrificing mechanical performance, demonstrating potential in a variety of fields, such as soft robotics and flexible electronics. In addition, its scalable design approach can be extended to other polymer systems to meet the growing demand for recyclable high-performance materials. This work was published in CCS Chemistry.
Why did life on Earth choose alpha amino acids as the building blocks of proteins? A new study suggests the answer lies in the stability of their inter-molecular interactions. Researchers found that primitive peptide-like molecules made from alpha backbones formed more durable, compartment-like structures than their longer beta counterparts, giving them a potential evolutionary advantage. The findings propose an assembly-driven model for the origins of life, offering fresh insight into how chemistry shaped biology.
Some of the first animals on Earth were likely ancestors of the modern sea sponge, according to MIT geochemists who unearthed new evidence in very old rocks.