Open-source sub-nanometer stabilization system for super-resolution fluorescence microscopy
Peer-Reviewed Publication
Updates every hour. Last Updated: 14-Dec-2025 06:11 ET (14-Dec-2025 11:11 GMT/UTC)
Ultraprecise fluorescence nanoscopy techniques such as MINFLUX and RASTMIN are enabling molecular-scale imaging and tracking in biologically relevant conditions. However, their implementation is challenging and requires stabilizing the position of the sample during the relatively long measurement times of minutes or tens of minutes. Scientists have developed an open-source system based on commonly available hardware that achieves sub-nanometric stabilization of the sample position for hours, opening the way for widespread application of single-molecule localization with true nanometer precision.
With climate change and higher incidence of crop diseases, global cocoa production and supply is being threatened. A research team from the National University of Singapore (NUS), motivated by these reports, set out to enhance the taste of carob, making it a more appealing and sustainable alternative to cocoa.
The NUS team, led by Associate Professor Liu Shao Quan from the Department of Food Science and Technology at the NUS Faculty of Science, has developed two innovative techniques to enhance the taste of carob pulp.
“Our carob-based innovation meets the relatively untapped and nascent market of alternative chocolate sources. Additionally, our new techniques improve the taste of carob itself, without the use of additives such as flavourings. So, consumers can have the best of both worlds – better flavour and a simple ingredients list. With these innovations, we aim to make a meaningful contribution towards addressing the current challenges and needs of the chocolate industry,” said Assoc Prof Liu.
LMU physicists have developed a model to describe how reaction-diffusion networks develop “foams”.
For decades, nuclear physicists believed that “Islands of Inversion” — regions where the normal rules of nuclear structure suddenly break down — were found mostly in neutron-rich isotopes. In these unusual pockets of the nuclear chart, magic numbers disappear, spherical shapes collapse, and nuclei unexpectedly transform into strongly deformed objects. So far, all such islands found were exotic nuclei such as beryllium-12 (N = 8), magnesium-32 (N = 20), and chromium-64 (N = 40), all of which are far away from the stable nuclei found in nature.
But now, a study recently carried out by an international collaboration of the Center for Exotic Nuclear Studies, Institute for Basic Science (IBS), University of Padova, Michigan State University, University of Strasbourg and other institutions have uncovered something no one had seen before: an Island of Inversion hiding in one of the most symmetric regions of all, where the number of protons equals the number of neutrons.Recently, addressing the inherent timescale mismatch challenge between fast and slow responses in optoelectronic sensors, a collaborative team from Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (Yukun ZHAO, Shulong LU, Min JIANG), Fudan University (Lifeng BIAN), and Suzhou University of Science and Technology (Jianya ZHANG) has proposed an innovative monolithic integration scheme. By combining surface defect introduction and local contact interface design with a gallium nitride (GaN) nanowire lift-off technique that eliminates the interference from the underlying silicon substrate, the team integrates fast and slow responses into a single device. This results in a transparent bifunctional device capable of self-driven detection and neural synaptic integration, with omnidirectional (360°) detection capability. As a photodetector, the device demonstrates the millisecond-level response speeds, while it exhibits the second- to minute-level relaxation time as an artificial synapse, achieving an over 1000-fold contrast in response dynamics. The device has been validated in the intelligent perception systems for humanoid robots successfully, advancing the development of multifunctional monolithic optoelectronic devices and providing a solid foundation for further research in related fields.
The work entitled "A dual-mode transparent device for 360° quasi-omnidirectional self-driven photodetection and efficient ultralow-power neuromorphic computing" was published in Light: Science & Applications.