KIOST reveals process by which marine microalga Heterosigma akashiwo causes buoyant microplastics to sink
Peer-Reviewed Publication
Updates every hour. Last Updated: 20-Jun-2025 17:10 ET (20-Jun-2025 21:10 GMT/UTC)
New research from DTU in Denmark could change the way the food industry manufactures dairy based yoghurt—making it both more cost-effective and more sustainable. Researchers have developed a simple yet powerful method that has the potential to reduce the use of expensive bacterial cultures by up to 80%, while also extending shelf life.
Micro light sources are crucial tools for studying the interactions between light and matter at the micro/nanoscale, encompassing diverse applications across multiple disciplines. Despite numerous studies on reducing the size of micro light sources and enhancing optical resolution, the efficient and simple fabrication of ultra-high-resolution micro light sources remains challenging due to its reliance on precise micro-nano processing technology and advanced processing equipment. In this study, a simple approach for the efficient fabrication of submicron light sources is proposed, namely shadow-assisted sidewall emission (SASE) technology. The SASE utilizes the widely adopted UV photolithography process, employing metal shadow modulation to precisely control the emission of light from polymer sidewalls, thereby obtaining photoluminescent light sources with submicron line widths. The SASE eliminates the need for complex and cumbersome manufacturing procedures. The effects of process parameters, including exposure dose, development time, and metal film thickness, on the linewidth of sources are investigated on detail. It is successfully demonstrated red, green, and blue submicron light sources. Finally, their potential application in the field of optical anti-counterfeiting is also demonstrated. We believe that the SASE proposed in this work provides a novel approach for the preparation and application of micro light sources.
UBC researchers are proposing a solution to a key hurdle in quantum networking: a device that can “translate” microwave to optical signals and vice versa. The technology could serve as a universal translator for quantum computers—enabling them to talk to each other over long distances and converting up to 95 per cent of a signal with virtually no noise. And it all fits on a silicon chip, the same material found in everyday computers.
Every query typed into a large language model (LLM), such as ChatGPT, requires energy and produces CO2 emissions. Emissions, however, depend on the model, the subject matter, and the user. Researchers have now compared 14 models and found that complex answers cause more emissions than simple answers, and that models that provide more accurate answers produce more emissions. Users can, however, to an extent, control the amount of CO2 emissions caused by AI by adjusting their personal use of the technology, the researchers said.