Low-frequency photonic simulator breaks barriers in synthetic frequency dimensions
Peer-Reviewed Publication
Updates every hour. Last Updated: 20-Jun-2025 12:10 ET (20-Jun-2025 16:10 GMT/UTC)
Recently, a research team led by Prof. LI Chuanfeng from the University of Science and Technology of China (USTC) achieved a breakthrough in quantum photonics. They developed an on-chip photonic simulator capable of simulating arbitrary-range coupled frequency lattices with gauge potential. This study was published in Physical Review Letters.
A research team led by Prof. CHEN Yan at the University of Science and Technology of China (USTC) took a leap forward in cardiovascular health monitoring. They developed a non-invasive radio frequency (RF) based system capable of monitoring heart rate variability (HRV) with clinical-grade accuracy over extended periods. This research has been published in Nature Communications.
A research team led by Prof.GUO Guangcan from the University of Science and Technology of China (USTC),collaborated with Prof.Jiannis K.Pachos from University of Leeds,has experimentally calculated the Jones polynomial based on the quantum simulation of braided Majorana zero modes.The research team determined the Jones polynomials of different links through simulate the braiding operations of Majorana fermions.This study was published in Physical Review Letters.
A research team led by Prof. SHEN Yan'an from the University of Science and Technology of China (USTC) has made significant progress in studying the sources and formation mechanisms of haze. Through coal combustion experiments and high-precision sulfur isotope analysis, the researchers drew the conclusion that particulate matter from coal combustion is one of the main sources of haze in North China. The findings were published online in Proceedings of the National Academy of Sciences (PNAS) on December 10.
- The joint research team led by Sangdong Kim and Bongseok Kim from DGIST’s Automotive Technology Division has developed a new signal analysis technology that enhances radar range resolution and is applicable to various radar systems. - The research findings were recognized for excellence and published in the prestigious IEEE Sensors Journal.
In a breakthrough set to revolutionize the semiconductor industry, the School of Engineering of the Hong Kong University of Science and Technology (HKUST) has developed the world’s first-of-its-kind deep-ultraviolet (UVC) microLED display array for lithography machines. This enhanced efficiency UVC microLED has showcased the viability of a lowered cost maskless photolithography through the provision of adequate light output power density, enabling exposure of photoresist films in a shorter time.