How to feed the next ten billion? Rethinking and re-engineering wheat inflorescence architecture to unlock yield potential
Peer-Reviewed Publication
Updates every hour. Last Updated: 23-Nov-2025 21:11 ET (24-Nov-2025 02:11 GMT/UTC)
As the global population grows, producing enough food for everyone has become one of the biggest challenges in agriculture. Wheat, one of the world’s most important crops, must yield more grain from each plant to help meet this demand. A key factor in determining yield is the inflorescence architecture, the way that the plant’s flower head (or spike) is strucrured. This architecture controls how many grains each spike can produce and finally influence the yield of crops. Over the history of wheat breeding, changes in spike shape and structure have played a major role in yield improvements. In a recent study, researchers at Shandong Agricultural University explored a new way to boost wheat yield by re-engineering spike architecture. Through detailed multi-dimentional comparisons of inflorescence development among different cereal crops, the researchers identified promising directions for redesigning wheat spikes to produce more grains, which opens up an exciting path roward breaking burrent yield limits and helping secure global food supplies for the future.
The increasing accumulation of discarded plastics has already caused serious environmental pollution. Simple landfills and incineration will inevitably lead to the loss of the abundant carbon resources contained in plastic waste. In contrast, photoconversion technology provides a green and sustainable solution to the global plastic waste crisis by converting plastics into hydrogen fuel and valuable chemicals. This review briefly introduces the advantages of photoconversion technology and highlights recent research progress, with a focus on photocatalyst design as well as the thermodynamics and kinetics of the reaction process. It discusses in detail the degradation of typical common plastic types into hydrogen and fine chemicals via photoconversion. Additionally, it outlines future research directions, including the application of artificial intelligence in catalyst design. Although photocatalytic technology remains at the laboratory stage, with challenges in catalyst performance and industrial scalability, the potential for renewable energy generation and plastic valorization is promising.
The first generations of stars formed under conditions very different from anywhere we can see in the nearby universe today. Astronomers are studying these differences using powerful telescopes that can detect galaxies so far away their light has taken billions of years to reach us.
Now, an international team of astronomers led by Tom Bakx at Chalmers University of Technology in Sweden has measured the temperature of one of the most distant known star factories. The galaxy, known as Y1, is so far away that its light has taken over 13 billion years to reach us.
The National Institute of Information and Communications Technology (NICT), together with 11 international research partners, has demonstrated a record-breaking 430 terabits per second (Tb/s) optical transmission using a novel approach that extends the capacity of standard-compliant cutoff-shifted optical fibers well beyond the original design.
The technology introduces a novel method that multiplies the usable capacity of certain spectral regions by up to three times. This approach exploits the properties of standard-compliant cutoff-shifted optical fibers based on the ITU-T G.654 recommendation, which have been originally designed to operate with light at relatively long wavelengths, in the C and L bands of transmission bands. By using light with shorter wavelengths, in the O-band region, researchers were able to realize three-mode transmission instead of the traditional single-mode transmission. This effectively extended the optical fiber capacity well beyond the intended design by combining single-mode transmission in the E/S/C/L bands with three-mode transmission in the O band. The team achieved a new optical transmission record of 430 Tb/s in international-standard-compliant optical fibers, surpassing the previous our record of 402 Tb/s, which was also set in 2024. Remarkably, the new result was obtained using nearly 20% less overall bandwidth, resulting in a simpler system that demonstrates how existing infrastructure can be pushed even further without costly upgrades.
The new technology builds on standard-compliant cutoff-shifted optical fiber technology and has the potential to be applied to metropolitan area networks and inter-datacenter links, where high-capacity connections are increasingly in demand, and standard-compliant cutoff-shifted optical fibers are already installed. The combination of high throughput, reduced complexity, and compatibility with existing infrastructure points to a more scalable and energy-efficient future for optical communications.
This achievement was reported as a post deadline paper at the 51st European Conference on Optical Communication (ECOC) 2025 on Thursday Oct. 2, 2025, at the Bella Center, Copenhagen, Denmark, and was partly supported by the Japan-Germany Beyond 5G/6G collaboration initiative.
Electronics and Telecommunications Research Institute (ETRI) has announced that, through joint research with KAIST, they developed a new technology that can implement stable quantum communication even in moving environments such as satellites, ships, and drones for the first time in the world.
Researchers from University of Granada and the Spanish National Research Council designed four ideal weekly menus with an equal energy value and following international recommendations for the daily intake of a wide range of macro- and micronutrients. Each menu was in accordance with an omnivorous Mediterranean, pesco-vegetarian, ovo-lacto-vegetarian, or vegan diet. The vegan diet reduced carbon emissions by 46%, water use by 7%, and land use by 33%, while the two vegetarian diets cut carbon emissions by up to 35%. The three plant-based diets were nutritionally balanced, except for small deficits in vitamin D, iodine, and vitamin B12, which can be remedied with supplements. The authors concluded that plant-based diets are equally nutritious and healthy as a Mediterranean diet, and much better for the planet.