Molecular coating cleans up noisy quantum light
Peer-Reviewed Publication
Updates every hour. Last Updated: 6-Oct-2025 21:11 ET (7-Oct-2025 01:11 GMT/UTC)
Quantum technologies need one particle of light, or photon, at a time. Quantum light sources also require each photon to be identical in energy. New sheetlike coating protects sources from contamination, improving spectral purity.
In Malaysia, one of the world’s top producers of palm oil, millions of tons of oil palm ash (OPA) are left behind as agricultural waste every year—a disposal challenge that could soon become a climate solution. Now, groundbreaking research from Universiti Sains Malaysia (USM) shows that this humble byproduct can be transformed into a powerful, eco-friendly material capable of capturing carbon dioxide from the air. Published on August 18, 2025, in Carbon Research as an open-access original article, this innovative study was led by Dr. Azam Taufik Mohd Din from the School of Chemical Engineering at Universiti Sains Malaysia’s Engineering Campus in Nibong Tebal, Penang. The team didn’t just repurpose waste—they engineered it. By treating raw oil palm ash with acid, then subjecting it to carbonization and chemical activation using potassium hydroxide (KOH), they created a new material dubbed OPA-KOH(1:2). The result? A tailor-made adsorbent with a highly optimized mesoporous structure—pores so precisely shaped that they allow CO₂ molecules to flow in easily and stick effectively. Despite having a modest surface area of 30.95 m²/g—far lower than many commercial activated carbons—the material achieved an impressive CO₂ adsorption capacity of 2.9 mmol/g. That performance rivals or even exceeds more expensive materials with much higher surface areas, proving that pore architecture matters more than size alone. “This isn’t just recycling—it’s upcycling at the molecular level,” says Dr. Mohd Din. “We’re taking a waste product that often ends up in landfills and turning it into a high-performance tool for carbon capture.”
A new study shows how substrate choice influences phase formation and interfacial stability in superconducting vanadium silicide films, providing design guidelines for improving material quality.