Breakthrough in laser glass: A rational path to designing complex materials
Peer-Reviewed Publication
Updates every hour. Last Updated: 23-Nov-2025 17:11 ET (23-Nov-2025 22:11 GMT/UTC)
A research team from the South China University of Technology has developed an innovative statistical modeling approach that accelerates the development of advanced rare-earth-doped laser glasses. Applying neighboring glassy compounds (NGCs) model, the team accurately predicted the local structural environments and luminescence properties of complex glass systems, reducing experimental trial-and-error. The NGCs model was used to establish the composition-structure relationship and populate the composition-property space. Finally, multi-luminescence property charts are generated to select compositions that satisfy multiple constraints, thus facilitating the rational design of chemically complex laser glasses for targeted applications. This versatile methodology paves the way for discovering next-generation laser materials with superior performance, expanding the horizons of glass science and technology.
A research paper by scientists at The University of New South Wales presented a new hydraulic-driven dual soft robotic system featuring a 3 DOF-soft cutting arm (SCA) and a 3-jaw teleoperated soft grasper system (TSGS).
The research paper was published on Jun. 12, 2025 in the journal Cyborg and Bionic Systems.
Children with asthma who use at-home monitoring are around half as likely to visit the emergency department or be hospitalised, compared to those who only receive care from their medical team, according to research presented at the European Respiratory Society Congress in Amsterdam, the Netherlands. Remote monitoring also helped keep children’s symptoms under control.
A 20-hectare plot at the Paint Rock ForestGEO site in north Alabama (29,282 trees mapped) reveals how landscape features shape tree species distribution and biomass. While overall biomass did not correlate with landform or topographic indices, the biomass of individual species did. The dominant species appeared to partition the site with American beech and yellow-poplar dominating the valleys, and white oak, southern shagbark hickory, and white ash predominantly on slopes and benches Average biomass was 211 Mg/ha., The species distribution demonstrates how topographic niche partitioning maximizes ecosystem carbon storage, as published in Forest Ecosystems.
Both biotic factors (microbial biomass and leaf nutrients) and abiotic factors (climate, soil properties, and elevation) play important roles in shaping how sensitive forest soil respiration (Q10) is to temperature changes. By analyzing 766 soil Q10 values from forests around the world, researchers found that microbial biomass carbon is the strongest single predictor, with plant traits like leaf phosphorus content also having a clear impact. The findings highlight the need to consider both biotic and abiotic influences when managing forests and improving carbon cycle models in a warming climate.
Unmanned Swarm Systems (USS) have transformed key fields like disaster rescue, transportation, and military operations via distributed coordination, yet trajectory prediction accuracy and interaction mechanism interpretability remain major bottlenecks—issues that existing methods fail to address by either ignoring physical constraints or lacking explainability. A recent breakthrough from Northwestern Polytechnical University solves this: Dr. Shuheng Yang and Prof. Dong Zhang developed the Swarm Relational Inference (SRI) model, an unsupervised end-to-end framework integrating swarm dynamics with dynamic graph neural networks. This model not only enhances interpretability and physical consistency but also drastically reduces long-term prediction errors, marking a critical step toward reliable autonomous collaboration for real-world USS applications.
For decades, aerospace engineers have confronted the life-threatening challenge of reigniting aircraft engines in high-altitude, low-pressure environments. Traditional spark ignition systems, limited by short discharge time and low energy efficiency, consistently fail to ignite lean kerosene-air mixtures in some difficult conditions. Although, gliding arc plasma ignitor offers improvements, its dependence on external gas sources prevents compatibility with combustor wide flight envelopes. This critical bottleneck has impeded next-generation aerospace propulsion systems.