‘Space ice’ is less like water than we thought
Peer-Reviewed Publication
Updates every hour. Last Updated: 10-Jul-2025 00:11 ET (10-Jul-2025 04:11 GMT/UTC)
“Space ice” contains tiny crystals and is not, as previously assumed, a completely disordered material like liquid water, according to a new study by scientists at UCL (University College London) and the University of Cambridge.
Aircraft conceptual design is a highly complex process involving multidisciplinary trade-offs and creative thinking. Recent advances in generative artificial intelligence (AI) provide promising opportunities to automate and augment this process. A new study, recently published in the Chinese Journal of Aeronautics, presents an AI-driven framework capable of generating aircraft configuration schemes based on design requirements, integrating aerodynamic knowledge and system constraints. This research fills a key gap in intelligent design methodology, offering a new tool to revolutionize the early stages of aircraft development.
High-resolution flow field data are critical for accurately evaluating the aerodynamic performance of aircraft. However, acquiring such data through large-scale numerical simulations or wind tunnel experiments is highly resource-intensive. Flow field super-resolution techniques offer an efficient alternative by reconstructing high-resolution data from low-resolution inputs. While existing super-resolution methods can recover the global structure of the flow, they often struggle to capture fine local details, especially shock waves. To address this limitation, this research proposes the FlowViT-Diff framework that integrates Vision Transformers (ViT) with an enhanced denoising diffusion probabilistic model to simultaneously capture global coherence and local flow features with high fidelity.
Maritime recovery of spacecraft is critical for crewed missions, offering advantages such as reduced impact forces and enhanced safety. While airbag cushioning systems have been widely adopted to mitigate landing impacts, prior studies predominantly focused on land or calm-water scenarios, leaving the complex interactions between airbags, reentry capsules, and ocean waves poorly understood. This study published in the Chinese Journal of Aeronautics on June6, 2025, addresses this gap by employing a Fluid-Structure Interaction (FSI) model to analyze water-landing characteristics under wave conditions, revealing key mechanisms such as wave-phase-dependent impact forces and horizontal velocity thresholds for stability. The findings provide essential insights for optimizing recovery systems, ensuring safer and more reliable maritime operations for reusable spacecraft.
A method is proposed for high-resolution neutron spectrum regulation across the entire energy domain, which helps to determine the optimal neutron spectrum for transuranic isotope production and a regulation scheme to establish this optimal neutron spectrum within the irradiation channels. The state-of-the-art production schemes for 252Cf and 238Pu in the High Flux Isotope Reactor were optimized, improving the yield of 252Cf by 12.16% and that of 238Pu by 7.53% to 25.84%.
Deflagration-to-Detonation Transition (DDT) process is the most common technique for obtaining stable detonation propagation. Although the detonation initiation appearances are different, the essential physical characteristic is the same: the local hot spot created by the energy focus. One or more bow shocks created by Mach reflection remain as strong transverse shocks after the detonation front. The corresponding numerical simulations show that the strong transverse shock propagation behavior strongly depends on the location where the hot spot forms. This work provides some fresh new insights into the DDT process, which may improve the understanding of DDT formation mechanisms.
Swansea University, Novel Engineering Consultants Ltd (Novel), and Airbus Endeavr Wales—a unique initiative between the Welsh Government and Airbus Defence and Space—are collaborating on a groundbreaking research initiative to strengthen aerospace systems against cyberattacks.