New method of measuring gravity with 3D velocities of wide binary stars is developed and confirms modified gravity at low acceleration
Peer-Reviewed Publication
Updates every hour. Last Updated: 12-Jul-2025 10:10 ET (12-Jul-2025 14:10 GMT/UTC)
Astrophysicist Kyu-Hyun Chae at Sejong University (Seoul, South Korea) has developed a new method of measuring gravity with all three components of the velocities (3D velocities) of wide binary stars, as a major improvement over existing statistical methods relying on sky-projected 2D velocities. The new method based on the Bayes theorem derives directly the probability distribution of a gravity parameter (a parameter that measures the extent to which the data departs from standard gravitational dynamics) through the Markov Chain Monte Carlo simulation of the relative 3D velocity between the stars in a binary. When the method is applied to a sample of about 300 highest-quality wide binaries selected from European Space Agency's Gaia Data Release 3, the results indicate a 4.2σ discrepancy with standard gravity at acceleration lower than about 1 nanometer per second squared. Much improved results are expected in the near future with upcoming data of precise velocities of stars in the line-of-sight (radial) direction.
The EQUALITY project brings together scientists, innovators, and prominent industrial players to develop advanced quantum computer algorithms to tackle strategic industrial problems in areas such as energy storage, aerodynamics, and space mission optimisation. This upcoming webinar series will highlight some of the project's most promising results. Topics include novel quantum approaches to optimisation, analysis of noise in quantum bits and its impact on applied computations, tailoring of quantum circuits, and more — all with a focus on real-world industrial relevance.
UTA researcher awarded a grant to develop AI-driven models that better predict cures and guide safer, more precise treatment