Many possible futures: How dopamine in the brain might inform AI that adapts quickly to change
Peer-Reviewed Publication
Updates every hour. Last Updated: 12-Jul-2025 03:11 ET (12-Jul-2025 07:11 GMT/UTC)
What if your brain had a built-in map – not of places, but of possible futures? Researchers at the Champalimaud Foundation (CF) blend neuroscience and artificial intelligence (AI) to reveal that populations of dopamine neurons in the brain don’t just track whether rewards are coming – they encode maps of when those rewards might arrive and how big they might be.
These maps adapt to context and may help explain how we weigh risks, and why some of us act on impulse while others hold back. Strikingly, this biological mechanism mirrors recent advances in AI, and could inspire new ways for machines to predict, evaluate and adapt to uncertain environments more like we do.
The entry of quantum computers into society is currently hindered by their sensitivity to disturbances in the environment. Researchers from Chalmers University of Technology in Sweden, and Aalto University and the University of Helsinki in Finland, now present a new type of exotic quantum material, and a method that uses magnetism to create stability. This breakthrough can make quantum computers significantly more resilient – paving the way for them to be robust enough to tackle quantum calculations in practice.
When a water-based polymer solution dries, the liquid surface splits in uneven, unpredictable ways—a phenomenon called symmetry breaking. Using a natural polymer in a controlled drying setting, researchers from JAIST, Japan, identified that the irregular patterns in symmetry breaking don’t just form by chance but follow hidden physical rules. This discovery offers new insight into how asymmetric patterns in nature form and could impact fields from material design to biological development.