Simulating the fluid dynamics of moving cells to map its location
Peer-Reviewed Publication
Updates every hour. Last Updated: 7-Oct-2025 01:11 ET (7-Oct-2025 05:11 GMT/UTC)
Utilizing numerical simulations, researchers have succeeded in recreating the fluid dynamics of flowing cells like blood or immune cells in the circulatory system. The team recreated the cells by programing them as deformable ‘capsules’ and placed them in a tube with a pulsating ‘flow.’ This in-silico model revealed that capsules will move to a specific position depending on two factors: the deformation of the capsule and the pulsation frequency.
Cancer diagnoses traditionally require invasive or labor-intensive procedures such as tissue biopsies. Now, research published in ACS Central Science reveals a method that uses pulsed infrared light to identify molecular profiles in blood plasma that could indicate the presence of certain common cancers. In this proof-of-concept study, blood plasma from more than 2,000 people was analyzed to link molecular patterns to lung cancer, extrapolating a potential “cancer fingerprint.”
Wear and tear on plastic products releases small to nearly invisible plastic particles, which could impact people’s health when consumed or inhaled. To make these particles biodegradable, researchers created plastics from plant starch instead of petroleum. An initial study published in ACS’ Journal of Agricultural and Food Chemistry shows how animals consuming particles from this alternative material developed health problems such as liver damage and gut microbiome imbalances.
Iron and its alloys, such as steel and cast iron, dominate the modern world, and there’s growing demand for iron-derived products. Traditionally, blast furnaces transform iron ore into purified elemental metal, but the process requires a lot of energy and emits air pollution. Now, researchers in ACS Energy Letters report that they’ve developed a cleaner method to extract iron from a synthetic iron ore using electrochemistry, which they say could become cost-competitive with blast furnaces.
Researchers have found new compounds that could be used to treat a common breast cancer that can be resistant to hormone therapies, outlined in a paper published in the journal RSC Medicinal Chemistry finding two critical enzymes involved in the production of the hormone oestrogen —aromatase and steroid sulfatase—at the same time.
Coupling reactions are essential in the synthesis of pharmaceuticals, agrochemicals, and advanced materials, but traditional methods often rely on costly and environmentally taxing transition metal catalysts. Now, researchers from Japan have reviewed emerging transition metal-free alternatives that align better with green chemistry principles. Their study highlights hypervalent iodine-mediated coupling, a strategy that enables selective bond formation without rare metals. By leveraging diaryliodonium salts, this approach can greatly enhance efficiency and reduce waste in coupling reactions.