Researchers develop new metallic materials using data-driven frameworks and explainable AI
Peer-Reviewed Publication
Updates every hour. Last Updated: 9-Oct-2025 23:11 ET (10-Oct-2025 03:11 GMT/UTC)
Found in knee replacements and bone plates, aircraft components, and catalytic converters, the exceptionally strong metals known as multiple principal element alloys (MPEA) are about to get even stronger through to artificial intelligence.
Sanket Deshmukh, associate professor in chemical engineering, and his team have designed a new MPEA with superior mechanical properties using a data-driven framework that leverages the supercomputing power of explainable artificial intelligence (AI). Their findings, supported by funding from the National Science Foundation, were recently published in Nature’s npj Computational Materials.
Anion-exchange membrane water electrolyzers (AEMWEs) for green hydrogen production have received intensive attention due to their feasibility of using earth-abundant NiFe-based catalysts. By introducing a third metal into NiFe-based catalysts to construct asymmetrical M-NiFe units, the d-orbital and electronic structures can be adjusted, which is an important strategy to achieve sufficient oxygen evolution reaction (OER) performance in AEMWEs. Herein, the ternary NiFeM (M: La, Mo) catalysts featured with distinct M-NiFe units and varying d-orbitals are reported in this work. Experimental and theoretical calculation results reveal that the doping of La leads to optimized hybridization between d orbital in NiFeM and 2p in oxygen, resulting in enhanced adsorption strength of oxygen intermediates, and reduced rate-determining step energy barrier, which is responsible for the enhanced OER performance. More critically, the obtained NiFeLa catalyst only requires 1.58 V to reach 1 A cm−2 in an anion exchange membrane electrolyzer and demonstrates excellent long-term stability of up to 600 h.
Charge transfer, or the movement of electrons, can occur either within a molecule or between two molecules. Combining the two types of charge transfer is challenging. Now, scientists from Shibaura Institute of Technology, Japan, have developed a hybrid charge transfer crystal using a novel pyrazinacene molecule. This crystal is capable of reacting with naphthalene to produce a reversible color shift, from greenish-blue to red-violet. Such color-changing crystals can have various potential applications in materials science.
Creating new drugs or medical treatments are some of the great promises of quantum computing. Scientists at the University of Sydney have for the first time used a quantum computer to simulate the chemical dynamics of real compounds, a vital step towards modelling more complex molecules and designing bespoke chemicals that could lead to improved sunscreen or skin cancer treatments.
When it comes to purifying quantum entanglement, new theoretical work highlights the importance of tailoring noise-minimizing solutions to specific quantum systems
When researchers from The University of Texas at Austin went searching for microplastics in sediments pulled from the bottom of Matagorda Bay and its surrounding inlets, they didn’t find much. Most of their samples contained only tens to hundreds of microplastic particles for each kilogram of sediment. This is hundreds to thousands of times less than other bayside environments around the world.