Simple color-changing sensor quickly identifies poisonous gases
Peer-Reviewed Publication
Updates every hour. Last Updated: 15-Dec-2025 19:11 ET (16-Dec-2025 00:11 GMT/UTC)
Not all poisonous gases have a smell or a color. But a tiny grid of pastel- and candy-colored squares that effectively “sniffs” out hazardous chemicals in the air such as chlorosarin — a highly toxic nerve agent — could help detect them. Researchers report in ACS Sensors that the colorful patterns in their inexpensive and durable paper-based sensor array changed in the presence of poisonous gases, allowing for quick and accurate measurements within minutes.
Quantum Key Distribution (QKD) enables information-theoretic secure communication based on quantum physics. A new study by Danish, Austrian, and Canadian researchers has demonstrated composable secure key generation against collective attacks over 20 km fiber using discrete-modulated Continuous-Variable QKD and modern numerical security proof methods. This marks the first practical implementation of a long-theorized protocol, combining high key rates, standard telecom compatibility, and rigorous security guarantees - an important step toward real-world quantum-secure communication in metropolitan networks.
An astonishing world record has been set at ETH Zurich with support from TU Wien: glass particles reveal their quantum properties – without having to be cooled to extremely low temperatures, as was previously the case.
A machine learning method developed by researchers from Institute of Science Tokyo, the Institute of Statistical Mathematics, and other institutions accurately predicts liquid crystallinity of polymers with 96% accuracy. They screened over 115,000 polyimides and selected six candidates with a high probability of exhibiting liquid crystallinity. Upon successful synthesis and experimental analyses, these liquid crystalline polyimides demonstrated thermal conductivities up to 1.26 W m⁻1 K⁻1, accelerating the discovery of efficient thermal materials for next-generation electronics.
A piece of GSI/FAIR’s cutting-edge research is scheduled to be launched into space next year: the Biophysics department will be involved in one of the next scientific missions on the International Space Station (ISS) with a highly innovative research project. The “HippoBox” project was successfully reviewed by the German Space Agency at DLR and recently selected for participation in the CELLBOX-4 mission on the ISS. The aim of the project is to use brain organoids (“mini-brains”) to investigate neuroplastic changes in a specific area of the brain, the hippocampus – a question that is highly relevant for the medical preparation of future long-term missions in space.
Large metal surfaces coated with precisely formed nanostructures have so far remained in the realm of fantasy. The obstacle standing in the way of their production seemed fundamental, as it resulted from the presence of crystal grains in metals: their boundaries disrupted the growth of the nanostructures. At the Institute of Nuclear Physics of the PAS, using titanium and its oxide by way of example, it has been proven that this obstacle can be overcome.