New study points to Skagerrak as nursery area for the enigmatic Greenland shark
Peer-Reviewed Publication
In celebration of #SharkWeek, we’re exploring the incredible world of sharks. From their vital role in marine ecosystems to the myths that surround them, join us as we explore all things shark in celebration of #SharkWeek!
Updates every hour. Last Updated: 11-Jul-2025 22:11 ET (12-Jul-2025 02:11 GMT/UTC)
Scientists have conducted a study of the predatory behavior of sharks in deep-sea ecosystems. This research provides insights into the behavior and distribution range of Pacific sleeper sharks. The research is published in the journal Ocean-Land-Atmosphere Research on June 1, 2025.
Research from the University of Adelaide’s School of Biological Sciences and Wildlife Crime Research Hub has highlighted evidence of shark products entering both Australia and Aotearoa/New Zealand, including clear patterns in flows between the two countries.
A new study from the University of Miami Rosenstiel School of Marine, Atmospheric, and Earth Science finds that juvenile great hammerhead sharks (Sphyrna mokarran), a critically endangered species, rely heavily on the resources of Florida’s Biscayne Bay as a nursery habitat during their earliest and most vulnerable years.
Inspired by the suckerfishes-shark motion behavior, they designed and prepared a kind of NIR light-propelled micro@nanomotor with weak acid-triggered release of H2O2-driven nanomotor. By the coordinated bond interaction, a large amount of Janus Au-Pt nanomotors with hydrogen peroxide (H2O2)-driven capacity, analogous to suckerfishes, were attached onto immovable yolk-shell structured polydopamine-mesoporous silica (PDA-MS) micromotor as the host to create two-stage PDA-MS@Au-Pt micro@nanomotor. PDA-MS@Au-Pt micro@nanomotor moved directionally by self-thermophoresis under the propulsion of NIR light with low power density. When the PDA-MS@Au-Pt entered into the weak acidic environment formed by a low concentration of H2O2, most small Au-Pt nanomotors were detached from the surface of PDA-MS due to the weak acidic sensitivity of the coordinated bond, and then performed self-diffusiophoresis in the environment containing a low concentration of H2O2 as a chemical fuel.