Do plants have a “dual insurance” strategy for phosphorus acquisition?
Peer-Reviewed Publication
Updates every hour. Last Updated: 18-May-2025 08:09 ET (18-May-2025 12:09 GMT/UTC)
Mechanically durable transparent electrodes are essential
for achieving long-term stability in flexible optoelectronic devices. Furthermore, they are crucial for applications in the fields of energy, display, healthcare, and soft robotics. Conducting meshes represent a promising alternative to traditional, brittle, metal oxide conductors due to their high
electrical conductivity, optical transparency, and enhanced mechanical flexibility. In this paper, we present a simple method for fabricating an ultra-transparent conducting metal oxide mesh electrode using selfcracking-assisted templates. Using this method, we produced an electrode with ultra-transparency (97.39%), high conductance (Rs = 21.24 Ω sq−1), elevated work function (5.16 eV), and good mechanical stability. We also evaluated the effectiveness of the fabricated electrodes by integrating them into organic photovoltaics, organic light-emitting diodes, and flexible transparent memristor devices for neuromorphic computing, resulting in exceptional device performance. In addition, the unique porous structure of the vanadium-doped indium zinc oxide mesh electrodes provided excellent flexibility, rendering them a promising option for application in flexible optoelectronics.
Anion-exchange membrane water electrolyzers (AEMWEs) for green hydrogen production have received intensive attention due to their feasibility of using earth-abundant NiFe-based catalysts. By introducing a third metal into NiFe-based catalysts to construct asymmetrical M-NiFe units, the d-orbital and electronic structures can be adjusted, which is an important strategy to achieve sufficient oxygen evolution reaction (OER) performance in AEMWEs. Herein, the ternary NiFeM (M: La, Mo) catalysts featured with distinct M-NiFe units and varying d-orbitals are reported in this work. Experimental and theoretical calculation results reveal that the doping of La leads to optimized hybridization between d orbital in NiFeM and 2p in oxygen, resulting in enhanced adsorption strength of oxygen intermediates, and reduced rate-determining step energy barrier, which is responsible for the enhanced OER performance. More critically, the obtained NiFeLa catalyst only requires 1.58 V to reach 1 A cm−2 in an anion exchange membrane electrolyzer and demonstrates excellent long-term stability of up to 600 h.
Reactive oxygen species (ROS) play a crucial role in antigen processing and presentation, essential for linking innate and adaptive immunity. While balanced ROS levels promote immune function, excess ROS can disrupt antigen recognition, resulting in immune dysfunction. Targeted therapies to regulate ROS present new avenues for enhancing immunotherapy.
A recent study published in Nature has explored how the South Asian Summer Monsoon (SASM) responds to warming under six climate scenarios, spanning from the past to the future. Led by researchers from the Institute of Atmospheric Physics at the Chinese Academy of Sciences, the study develops a unified framework based on thermodynamic (moisture-driven) and dynamic (wind-driven) processes that govern changes in the SASM, suggesting that insights from past warm climates can inform our understanding of the future SASM.
Here, researchers from Technical Institute of Physics and Chemistry, CAS, fabricated customized micropatterns consisting of hydrogel core-shell nanoparticles via the femtosecond laser maskless optical projection lithography (Fs-MOPL) technique for the first time.
Their work offers an approach to fabricating hydrogel core-shell nanoparticles without high temperature or multiple steps.