Launch of Materials and Solidification: A new international journal focused on solidification science and technology
Business Announcement
Updates every hour. Last Updated: 9-Jul-2025 10:10 ET (9-Jul-2025 14:10 GMT/UTC)
Materials and Solidification, an international journal dedicated to advancing research in solidification theory, materials design, and processing technology, has officially launched its inaugural issue. Published by Tsinghua University Press and supported by the State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, the journal is led by Editor-in-Chief Prof. Jinshan Li and Executive Editor Prof. Junjie Wang. It aims to serve as a high-level academic platform for global researchers and engineers to drive innovations in solidification science and its industrial applications.
A research team from Shanghai Jiao Tong University has achieved a groundbreaking feat in quantum materials by growing ultrathin CrTe2 films on NbSe2 substrates using molecular beam epitaxy (MBE). They created ultra-thin, stress-engineered structures that exhibit unique magnetic properties at the nanoscale. The study reveals how lattice mismatches induce periodic stress relief, leading to the formation of magnetic edge states that could be manipulated for future quantum technologies. This innovative approach opens new avenues for designing nanoscale spintronic devices and exploring topological quantum phenomena, paving the way for advancements in quantum computing and next-generation magnetic materials.
In an era of intensifying extreme weather, this review offers a clear message: to better project the future of tropical cyclones in a warmer climate, we must first understand the patterns of the warming seas.
Treatment of industrial high-salinity wastewater (1%~3.5% NaCl) typically involves integrated physicochemical and biological technologies. This necessitates real-time monitoring of biochemical oxygen demand (BOD) before biological treatment to assess biodegradability. While microbial electrochemical sensors (MESs) employing electroactive biofilms (EABs) as sensing elements to effectively measure BOD in municipal wastewater, their performance in saline environments may be compromised due to biofilm damage under salt stress. Leveraging the characteristic that certain electroactive microorganisms thrive in high-salinity conditions and that electrical stimulation enhances microbial salt tolerance, Professor Xin Wang’s team investigated microbial responses across different levels of salinity. The study examined MES performance and long-term stability at different salinity levels, aiming to determine whether such sensors can rapidly measure BOD in saline wastewater. Furthermore, it elucidates salt-tolerance mechanisms by analyzing EAB adaptations under salinity stress.
As environmental pollutants pose a serious threat to socioeconomic and environmental health, the development of simple, efficient, accurate and cost-effective methods for pollution monitoring and control remains a major challenge, but it is an unavoidable issue. In the past decade, the artificial nanozymes have been widely used for environmental pollutant monitoring and control, because of their low cost, high stability, easy mass production, etc. However, the conventional nanozyme technology faces significant challenges in terms of difficulty in regulating the exposed crystal surface, complex composition, low catalytic activity, etc. In contrast, the emerging single-atom nanozymes (SANs) have attracted much attention in the field of environmental monitoring and control, due to their multiple advantages of atomically dispersed active sites, high atom utilization efficiency, tunable coordination environment, etc. To date, the insufficient efforts have been made to comprehensively characterize the applications of SANs in the monitoring and control of environmental pollutants. Building on the recent advances in the field, this review systematically summarizes the main synthesis methods of SANs and highlights their advances in the monitoring and control of environmental pollutants. Finally, we critically evaluate the limitations and challenges of SANs, and provide the insights into their future prospects for the monitoring and control of environmental pollutants.
Manganese-based chalcogenides have significant potential as anodes for sodium-ion batteries (SIBs) due to their high theoretical specific capacity, abundant natural reserves, and environmental friendliness. However, their application is hindered by poor cycling stability, resulting from severe volume changes during cycling and slow reaction kinetics due to their complex crystal structure. Here, an efficient and straightforward strategy was employed to in-situ encapsulate single-phase porous nanocubic MnS0.5Se0.5 into carbon nanofibers using electrospinning and the hard template method, thus forming a necklace-like porous MnS0.5Se0.5-carbon nanofiber composite (MnS0.5Se0.5@N-CNF). The introduction of Se significantly impacts both the composition and microstructure of MnS0.5Se0.5, including lattice distortion that generates additional defects, optimization of chemical bonds, and a nano-spatially confined design. In situ/ex-situ characterization and density functional theory calculations verified that this MnS0.5Se0.5@N-CNF alleviates the volume expansion and facilitates the transfer of Na+/electron. As expected, MnS0.5Se0.5@N-CNF anode demonstrates excellent sodium storage performance, characterized by high initial Coulombic efficiency (90.8%), high-rate capability (370.5 mAh g-1 at 10 A g-1) and long durability (over 5000 cycles at 5 A g-1). The MnS0.5Se0.5@N-CNF//NVP@C full cell, assembled with MnS0.5Se0.5@N-CNF as anode and Na3V2(PO4)3@C as cathode, exhibits a high energy density of 254 Wh kg-1 can be provided. This work presents a novel strategy to optimize the design of anode materials through structural engineering and Se substitution, while also elucidating the underlying reaction mechanisms.
Researchers explore how 6-PPD quinone (6-PPDQ), an environmental contaminant derived from tire antioxidant N-(1,3-dimethylbutyl)-N′-phenyl-p-phenylenediamine (6PPD), affects the citric acid cycle in C. elegans at environmentally relevant concentrations. The research reveals significant reduction in the citric acid cycle intermediates and key enzyme gene expressions by 6-PPDQ exposure, highlighting the its potential exposure risk on citric acid cycle metabolism.
The researchers developed a green and simple method to synthesize a silica aerogel that integrates two contrasting functional groups including methyl and amine. The aerogel not only has high adsorption capacity for low-concentration CO2 but also possesses excellent thermal insulation performance under humid and high-temperature conditions.
Researchers from the Chinese Academy of Sciences and Capital Medical University performed an integrated multi-omics study to compare the effects of acute versus long-term exercise in healthy men. Acute exercise led to temporary responses, while repeated exercise caused adaptive changes, particularly reducing cellular senescence and inflammation and boosting betaine metabolism. The increase in betaine due to exercise, partly through renal biosynthesis, has anti-aging effects and improves age-related health decline in mice. Betaine binds to and inhibits TANK-binding kinase 1 (TBK1), slowing the aging process. These results provide a comprehensive understanding of the molecular benefits of exercise and identify betaine as a potential exercise mimetic for promoting healthy aging.