Depositing Pt nanoparticles on crumpled Ti3C2Tx for enhanced electrochemical sensing
Peer-Reviewed Publication
Welcome to theTsinghua University Press (TUP) News Page.
Below are the latest research news from TUP.
Updates every hour. Last Updated: 3-Jul-2025 22:10 ET (4-Jul-2025 02:10 GMT/UTC)
Dopamine plays a crucial role in regulating various brain functions, making the development of highly sensitive detection methods and precise quantitative analysis. techniques of great significance. However, realizing highly selective and sensitive detection of dopamine in complex biological environments remains a challenge. Here, we prepared 3D crumpled Ti3C2Tx structures loaded with Pt nanoparticles (Pt/Na- Ti3C2Tx) by wet chemical reduction and ion intercalation. The synergistic coupling between Pt nanoparticles and MXene support facilitates efficient electron transfer between dopamine and the electrode surface, thereby improving the sensing performance of dopamine. Furthermore, this wrinkled structure not only enhances the specific surface area by inhibiting the stacking of layered Ti3C2Tx nanosheets, but also effectively prevents the agglomeration of nanoparticles. The experimental results showed that Pt/Na- Ti3C2Tx possessed a wide linear range (0.1-100 μM), a low detection limit (0.029 μM), and a high sensitivity (0.556 μAμM-1cm-2). This work proposes an innovative strategy for achieving highly sensitive dopamine detection while advancing the utilization of MXene-based nanocomposites in electrochemical sensor development.
Micro-supercapacitors (MSCs) face significant limitations due to low energy density despite their high power density and long cycle life. In this study, single-layer Ti3C2Tx nanosheets are employed to fabricate a MXene-hydroxylated nanocellulose-carbon nanotube (MHC) composite ink, which is used to fabricate high-energy flexible MSCs via direct ink writing 3D printing technology. The introduction of the rheological modifier hydroxylated nanocellulose (HNC) not only constructs interlayer spacers to inhibit nanosheet restacking but also optimizes the rheological properties and 3D printability of the composite ink. Meanwhile, the synergistic effect of carbon nanotubes (CNTs) as conductive agents enhances interlayer electron transport and electrochemical performance. Benefiting from the rational design of the ink and printing process, the fabricated MSCs exhibit high-precision structures (electrode width of 250 μm, electrode area of 0.2625 cm2) and outstanding energy storage properties, achieving 543 mF cm-2 areal capacitance, 27.15 μWh cm-2 energy density, and 6 mW cm-2 power density, significantly surpassing previously reported MXene-based MSCs. Moreover, the flexible all-solid-state MSCs demonstrate excellent performance stability under mechanical bending, series/parallel module integration, and long-term cycling tests, providing a customizable energy storage solution for flexible wearable microelectronic systems.
Endogenous AICAR (Acadesine) demonstrates significant therapeutic potential as a phase III clinical agent for the treatment of adverse cardiovascular reactions to coronary artery bypass grafting and as a phase I/II clinical agent for chronic lymphocytic leukemia. However, its biosynthetic mechanism remains poorly defined. Previous study demonstrated that AICAR was significantly enriched in the Fusarium solani mutant veAOE14, which overexpressed the global regulator VeA. In May 2025, the research team led by Professor Jichuan Kang from the Engineering and Research Center for Southwest Biopharmaceutical Resource of National Education Ministry of China, Guizhou University, published a research paper titled “MtfA, a C2H2 transcriptional regulator, negatively regulates PRPS2-mediated biosynthesis of the adenosine analogue Acadesine in Fusarium solani” in the journal Mycology.
This study elucidated, at the molecular level, the regulatory mechanism by which VeA overexpression enhances AICAR production in Fusarium solani. The team established a three-tier regulatory network model (VeA-MtfA-PRPS2) (Figure 1), laying an important foundation for the engineering of filamentous fungal strains for AICAR biosynthesis.
A groundbreaking new review comprehensively synthesizes the latest developments in next-generation chimeric antigen receptor T cell (CAR-T) therapies, highlighting key preclinical and clinical breakthroughs in the treatment of lymphoma. The article examines barriers to CAR-T efficacy and provides an in-depth analysis of innovative strategies, including multi-specific CAR, T cells redirected for universal cytokine-mediated killing (TRUCKs), switch receptor CAR, safety switch/suicide system, and in vivo CAR-T cells. With a special focus on the role of epigenetics and metabolism in CAR-T cell exhaustion, the review offers valuable insights and future directions for advancing CAR-T immunotherapy.
Bispecific antibodies (bsAbs) refer to antibodies that bind two different antigens or epitopes simultaneously, which can enhance the targeting of antibodies and the efficacy of cancer treatments. Recent studies indicate that bsAb is a promising first-line or later-line treatment for non-small cell lung cancer (NSCLC) patients and may overcome treatment resistance. This study explores the classification, mechanisms of action and clinical application of bsAbs in the treatment of NSCLC.
Perovskite-structured BaFe0.4Co0.4Zr0.1Y0.1O3-δ (BFCZY) exhibits proton-electron-oxygen ion triple conductions and high catalytic activity of oxygen reduction (ORR) and oxygen evolution reaction (OER) at low temperatures. Although it has stability problems in a humid air environment, the degradation mechanism of BFCZY and the influences of temperature, steam content and polarization on its stability have been rarely studied. The activity and stability of the BFCZY oxygen electrode are significantly improved through heterointerface engineering by infiltrating the BaCoO3 (BCO) catalyst. It is imperative to fill this research gap, as it is crucial for promoting the commercial development of reversible protonic ceramic electrochemical cells (R-PCECs).
Highly efficient chemiresistive gas sensors are crucial for numerous applications. Notably, though the generally high working temperature brings fine sensing performance, as well as causing high power consumption, poor safety, and disabled operational stability. Thanks to the cost-effective, simplified structure and integrated diversity, room temperature (RT) operational mode has been put forward and applied in gas sensor devices. However, insufficient limits of detection limit (LOD) and disappointingly long detection time limit their broad applications, meanwhile, the existing sensing mechanism based on the charge transfer between the analyte gas and the oxide surface hampers room temperature gas sensing with low LOD and rapid speed.
Clinical photothermal therapy continues to encounter significant challenges, including systemic toxicity risks associated with intravenous drug administration and inadequate photothermal specificity in the targeted lesion area, particularly concerning the prevention of bone tumor recurrence. To address these issues, this study developed a photothermal functional composite bioceramic scaffold that integrates a Si3N4 matrix known for its excellent antibacterial properties, black glass SiOC exhibiting photothermal characteristics, and bone-inductive graphene oxide (GO). A mapping model was established to correlate the properties of the GO/KH570-H/Si3N4 precursor slurry with the parameters of the SLA additive manufacturing process. Following sintering at 1300 ℃, a GO/SiOC/Si3N4 composite ceramic was successfully obtained. Under irradiation with 808 nm near-infrared light at an intensity of 1 W/cm², the temperature of the leather-coated composite scaffold reached 47.8 ℃ within 10 minutes. This innovative approach presents a promising solution for precise photothermal therapy in postoperative bone tumor repair.
B4C–TiB2 composite ceramics, with their unique integrated design of structure and function, have demonstrated remarkable potential in extreme environments, such as ultrahard wear-resistant applications and high-temperature electromagnetic shielding. However, the inherent brittleness of ceramics presents substantial machining challenges for fabricating complex geometries, significantly restricting their practical implementation. The development of robust joining technologies thus represents a critical pathway toward manufacturing large-scale and intricately shaped B4C–TiB2 architectures. To date, no studies have been reported on joining B4C–TiB2 composites, making this a vital yet unexplored research frontier. Addressing this gap holds tremendous potential to broaden their industrial applicability and pioneer novel advancements in advanced ceramic engineering.
Glasses are regarded as promising luminescent materials due to their distinct superiorities of physicochemical stability, cost-effectiveness and convenient preparation. However, developing thermal-stable glass scintillators for multi-scenario applications without compromising luminescent efficiency remains a rigorous challenge. Especially for Cu+-doped glass scintillators, there are very few studies on improving their luminescent efficiency and thermal stability. Therefore, it is necessary to fill this research gap and develop the potential of their multi-functional applications.