image: The photo shows a rare-earth crystal that serves as quantum memory. The crystal is cooled to 3 degrees above absolute zero temperature. view more
Credit: © UNIGE
La communication et la cryptographie quantiques sont lavenir de la communication hautement sécurisée. Mais il reste à relever de nombreux défis avant la mise sur pied dun réseau quantique mondial, notamment la propagation du signal quantique sur de longues distances. Un défi majeur consiste à créer des mémoires capables de stocker linformation quantique portée par la lumière. Des chercheurs de lUniversité de Genève (UNIGE), en collaboration avec le CNRS, ont découvert un nouveau matériau dans lequel un élément, lytterbium, est capable de stocker et protéger la fragile information quantique, tout en fonctionnant à des fréquences élevées. Cela en fait un candidat idéal pour des futurs réseaux quantiques, dont lobjectif est de propager le signal sur de longues distances en servant de répéteurs. Ces résultats sont publiés dans la revue Nature Materials.
Aujourdhui, la cryptographie quantique passe par la fibre optique, sur quelques centaines de kilomètres. Elle est caractérisée par son aspect de haute sécurité : il est en effet impossible de copier les informations ou de les intercepter sans les faire disparaître. Toutefois, cette impossibilité de copier le signal empêche aussi les scientifiques de lamplifier pour le diffuser sur de longues distances, comme cest le cas avec le réseau wifi.
Trouver le bon matériau pour confectionner les mémoires quantiques
Le signal ne pouvant être ni copié ni amplifié sous peine de disparaître, les scientifiques se penchent actuellement sur la fabrication de mémoires quantiques capables de le répéter en capturant les photons et en les synchronisant entre eux afin de les diffuser toujours plus loin. Reste à trouver le matériau approprié pour confectionner ces mémoires quantiques. «Toute la difficulté est de trouver un matériau capable disoler linformation quantique portée par les photons des perturbations environnementales pour que lon puisse les retenir environ une seconde et les synchroniser entre eux, explique Mikael Afzelius, chercheur au Département de physique appliquée de la Faculté des sciences de lUNIGE. Or, en une seconde, un photon parcourt environ 300 000 km!» Les physiciens et les chimistes doivent donc trouver un matériau très bien isolé des perturbations, mais capable de fonctionner à des hautes fréquences permettant de stocker et restituer le photon rapidement, deux caractéristiques souvent considérées comme étant incompatibles.
Un point magique pour le graal des terres rares
Aujourdhui, il existe déjà des prototypes de mémoire quantique testés en laboratoire, notamment à base de terres rares comme leuropium ou le praséodyme, mais leur vitesse nest pas encore assez élevée. «Nous nous sommes alors intéressés à une terre rare du tableau périodique qui avait été très peu étudiée, lytterbium», expose Nicolas Gisin, professeur au Département de physique appliquée de la Faculté des sciences de lUNIGE et fondateur dID Quantique. «Notre objectif est de trouver le matériau idéal pour la confection des répéteurs quantiques, et cela passe par lisolation des atomes de leur environnement qui a tendance à perturber le signal», complète-t-il. Cela semble être le cas avec lytterbium !
En soumettant cette terre rare à des champs magnétiques très précis, les physiciens de lUNIGE et du CNRS ont découvert quelle entre dans un état dinsensibilité qui la coupe des perturbations de son environnement et qui permet de piéger le photon pour le synchroniser. «Nous avons trouvé un «point magique» en variant lamplitude et la direction du champ magnétique, senthousiasment Alexey Tiranov, chercheur au Service de physique appliquée de la Faculté des sciences de lUNIGE, et Philippe Goldner, chercheur à lInstitut de recherche de chimie Paris (CNRS/Chimie ParisTech). Lorsque ce point est atteint, on augmente dun facteur 1 000 les temps de cohérence des atomes dytterbium, tout en travaillant à des hautes fréquences!»
Les avantages de lytterbium
Les physiciens sont actuellement en train de construire des mémoires quantiques à base dytterbium qui permettent de réaliser rapidement les transitions dun répéteur à lautre, tout en gardant le photon le plus longtemps possible pour effectuer la synchronisation nécessaire. «Ce matériau ouvre un nouveau champ des possibles dans la création dun réseau quantique mondial et souligne limportance de poursuivre des recherches fondamentales en parallèle à des recherches plus appliquées, comme la création dune mémoire quantique», conclut Mikael Afzelius.
###
Journal
Nature Materials