News Release

New AI model could make power grids more reliable amid rising renewable energy use

Peer-Reviewed Publication

University of Virginia School of Engineering and Applied Science

University of Virginia assistant professor of civil and environmental engineering Negin Alemazkoor

image: 

University of Virginia assistant professor of civil and environmental engineering Negin Alemazkoor.

view more 

Credit: UVA Engineering

As renewable energy sources such as wind and solar become more widespread, managing the power grid has become increasingly complex. Researchers at the University of Virginia have developed an innovative solution: an artificial intelligence model that can address the uncertainties of renewable energy generation and electric vehicle demand, making power grids more reliable and efficient.

Multi-Fidelity Graph Neural Networks: A New AI Solution

The new model is based on multi-fidelity graph neural networks (GNNs), a type of AI designed to improve power flow analysis — the process of ensuring electricity is distributed safely and efficiently across the grid. The "multi-fidelity" approach allows the AI model to leverage large quantities of lower-quality data (low-fidelity) while still benefiting from smaller amounts of highly accurate data (high-fidelity). This dual-layered approach enables faster model training while increasing the overall accuracy and reliability of the system.

Enhancing Grid Flexibility for Real-Time Decision Making

By applying GNNs, the model can adapt to various grid configurations and is robust to changes, such as power line failures. It helps address the longstanding “optimal power flow” problem, determining how much power should be generated from different sources. As renewable energy sources introduce uncertainty in power generation and distributed generation systems, along with electrification (e.g., electric vehicles), increase uncertainty in demand, traditional grid management methods struggle to effectively handle these real-time variations. The new AI model integrates both detailed and simplified simulations to optimize solutions within seconds, improving grid performance even under unpredictable conditions.

“With renewable energy and electric vehicles changing the landscape, we need smarter solutions to manage the grid,” said Negin Alemazkoor, assistant professor of civil and environmental engineering and lead researcher on the project. “Our model helps make quick, reliable decisions, even when unexpected changes happen.”

Key Benefits:

  • Scalability: Requires less computational power for training, making it applicable to large, complex power systems.
  • Higher Accuracy: Leverages abundant low-fidelity simulations for more reliable power flow predictions.
  • Improved generaliazbility: The model is robust to changes in grid topology, such as line failures, a feature that is not offered by conventional machine leaning models.

This innovation in AI modeling could play a critical role in enhancing power grid reliability in the face of increasing uncertainties.

Ensuring the Future of Energy Reliability

“Managing the uncertainty of renewable energy is a big challenge, but our model makes it easier,” said Ph.D. student Mehdi Taghizadeh, a graduate researcher in Alemazkoor’s lab.Ph.D. student Kamiar Khayambashi, who focuses on renewable integration, added, “It’s a step toward a more stable and cleaner energy future.”

Publications

Multi-fidelity Graph Neural Networks for Efficient Power Flow Analysis Under High-Dimensional Demand and Renewable Generation Uncertainty, published by Electric Power Systems Research Authors are: Mehdi Taghizadeh, Kamiar Khayambashi, Md Abul Hasnat, and Negin Alemazkoor with the Department of Civil and Environmental Engineering at the University of Virginia. 

 "Hybrid Chance-Constrained Optimal Power Flow under Load and Renewable Generation Uncertainty Using Enhanced Multi-Fidelity Graph Neural Networks" published by Journal of Machine Learning for Modeling and Computing. Authors are: Kamiar Khayambashi, Md Abul Hasnat, and Negin Alemazkoor with the Department of Civil and Environmental Engineering.

About UVA Engineering: As part of the top-ranked, comprehensive University of Virginia, UVA Engineering is one of the nation’s oldest and most respected engineering schools. Our mission is to make the world a better place by creating and disseminating knowledge and by preparing future engineering leaders. Outstanding students and faculty from around the world choose UVA Engineering because of our growing and internationally recognized education and research programs. UVA is the No. 1 public engineering school in the country for the percentage of women graduates, among schools with at least 75 degree earners; among the top engineering schools in the United States for the four-year graduation rate of undergraduate students; and among the top-growing public engineering schools in the country for the rate of Ph.D. enrollment growth. Our research program has grown by 95% since 2016. Learn more at engineering.virginia.edu.


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.