News Release

Batteries for miniature bio-integrated devices and robotics — here’s how to do it

Peer-Reviewed Publication

University of Oxford

Biocompatible batteries

image: 

The development of tiny, soft and biocompatible batteries to power minimally invasive biomedical devices is of critical importance. Here the authors present a microscale soft rechargeable lithium-ion battery based on the surfactant-supported assembly of silk hydrogel droplets. Scale bar: 400 μm. Image credit: Yujia Zhang.

 

view more 

Credit: Yujia Zhang.

University of Oxford researchers have made a significant step towards realising miniature, soft batteries for use in a variety of biomedical applications, including the defibrillation and pacing of heart tissues. The work has been published today in the journal Nature Chemical Engineering.

The development of tiny smart devices, smaller than a few cubic millimeters, demands equally small power sources. For minimally invasive biomedical devices that interact with biological tissues, these power sources must be fabricated from soft materials. Ideally, these should also have features such as high capacity, biocompatibility and biodegradability, triggerable activation, and the ability to be controlled remotely. To date, there has been no battery that can fulfil these requirements all at once.

To address these requirements, researchers from the University of Oxford’s Department of Chemistry and Department of Pharmacology have developed a miniature, soft lithium-ion battery constructed from biocompatible hydrogel droplets. Surfactant-supported assembly (assembly aided by soap-like molecules), a technique reported by the same group last year in the journal Nature (DOI: 10.1038/s41586-023-06295-y), is used to connect three microscale droplets of 10 nanolitres volume. Different lithium-ion particles contained in each of the two ends then generate the output energy.

‘Our droplet battery is light-activated, rechargeable, and biodegradable after use. To date, it is the smallest hydrogel lithium-ion battery and has a superior energy density’ said Dr Yujia Zhang (Department of Chemistry, University of Oxford), the lead researcher for the study and a starting Assistant Professor at the École Polytechnique Fédérale de Lausanne. ‘We used the droplet battery to power the movement of charged molecules between synthetic cells and to control the beating and defibrillation of mouse hearts. By including magnetic particles to control movement, the battery can also function as a mobile energy carrier.’

Proof-of-concept heart treatments were carried out in the laboratory of Professor Ming Lei (Department of Pharmacology), a senior electrophysiologist in cardiac arrhythmias. He said: ‘Cardiac arrhythmia is a leading cause of death worldwide. Our proof-of-concept application in animal models demonstrates an exciting new avenue of wireless and biodegradable devices for the management of arrhythmias.’

Professor Hagan Bayley (Department of Chemistry), the research group leader for the study, said: ‘The tiny soft lithium-ion battery is the most sophisticated in a series of microscale power packs developed by Dr Zhang and points to a fantastic future for biocompatible electronic devices that can operate under physiological conditions.’

The researchers have filed a patent application through Oxford University Innovation. They envisage that the tiny versatile battery, particularly relevant to small-scale robots for bioapplications, will open up new possibilities in various areas including clinical medicine.

Notes for editors:

Images of this work can be downloaded here: https://drive.google.com/drive/folders/1kAom8uTc0Dcchi_RUA0z3_M1yC3c3FH3?usp=drive_link

These images are for editorial purposes only and MUST be credited. They MUST NOT be sold on to third parties.

For media enquiries, including interview requests, contact:

Professor Yujia Zhang, University of Oxford / École Polytechnique Fédérale de Lausanne: yujia.zhang@epfl.ch

Professor Ming Lei, University of Oxford: ming.lei@pharm.ox.ac.uk

Professor Hagan Bayley, University of Oxford: hagan.bayley@chem.ox.ac.uk

The study ‘A microscale soft lithium-ion battery for tissue stimulation’ will be published in Nature Chemical Engineering on 25 October 2024 at 10:00 (London time), 25 October 2024 at 05:00 (US Eastern Time), and will be available at DOI: 10.1038/s44286-024-00136-z. Once published online, it will be available at the following URL: https://www.nature.com/articles/s44286-024-00136-z

About the University of Oxford

Oxford University has been placed number 1 in the Times Higher Education World University Rankings for the ninth year running, and ​number 3 in the QS World Rankings 2025. At the heart of this success are the twin-pillars of our ground-breaking research and innovation and our distinctive educational offer.

Oxford is world-famous for research and teaching excellence and home to some of the most talented people from across the globe. Our work helps the lives of millions, solving real-world problems through a huge network of partnerships and collaborations. The breadth and interdisciplinary nature of our research alongside our personalised approach to teaching sparks imaginative and inventive insights and solutions.

Through its research commercialisation arm, Oxford University Innovation, Oxford is the highest university patent filer in the UK and is ranked first in the UK for university spinouts, having created more than 200 new companies since 1988. Over a third of these companies have been created in the past three years. The university is a catalyst for prosperity in Oxfordshire and the United Kingdom, contributing £15.7 billion to the UK economy in 2018/19, and supports more than 28,000 full time jobs.


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.