“[...] our results put the basis for the use of antioxidants supplementation in Down Syndrome patients to prevent liver-associated pathologies.”
BUFFALO, NY- July 10, 2024 – A new research paper was published in Aging (listed by MEDLINE/PubMed as "Aging (Albany NY)" and "Aging-US" by Web of Science) Volume 16, Issue 12, entitled, “Aging exacerbates oxidative stress and liver fibrosis in an animal model of Down Syndrome.”
Down Syndrome (DS) is a common genetic disorder characterized by an extra copy of chromosome 21, leading to dysregulation of various metabolic pathways. Oxidative stress in DS is associated with neurodevelopmental defects, neuronal dysfunction, and a dementia onset resembling Alzheimer's disease. Additionally, chronic oxidative stress contributes to cardiovascular diseases and certain cancers prevalent in DS individuals.
In this new study, researchers Sebastiano Giallongo, Jessica Ferrigno, Rosario Caltabiano, Giuseppe Broggi, Amer M. Alanazi, Alfio Distefano, Emanuela Tropea, Antonella Tramutola, Marzia Perluigi, Giovanni Li Volti, Eugenio Barone, and Ignazio Alberto Barbagallo from the University of Catania, King Saud University, and Sapienza University of Rome investigated the impact of aging on oxidative stress and liver fibrosis using a DS murine model (Ts2Cje mice).
“Our results show that DS mice show increased liver oxidative stress and impaired antioxidant defenses, as evidenced by reduced glutathione levels and increased lipid peroxidation.”
DS liver exhibited an altered inflammatory response and mitochondrial fitness as the researchers showed by assaying the expression of HMOX1, CLPP, and the heat shock proteins Hsp90 and Hsp60. DS liver also displayed dysregulated lipid metabolism, indicated by altered expression of PPARα, PPARγ, FATP5, and CTP2. Consistently, these changes might contribute to non-alcoholic fatty liver disease development, a condition characterized by liver fat accumulation. Consistently, histological analysis of DS liver revealed increased fibrosis and steatosis, as showed by Col1a1 increased expression, indicative of potential progression to liver cirrhosis. Therefore, their findings suggest an increased risk of liver pathologies in DS individuals, particularly when combined with the higher prevalence of obesity and metabolic dysfunctions in DS patients.
“These results shed a light on the liver's role in DS-associated pathologies and suggest potential therapeutic strategies targeting oxidative stress and lipid metabolism to prevent or mitigate liver-related complications in DS individuals.”
Read the full paper: DOI: https://doi.org/10.18632/aging.205970
Corresponding Author: Giovanni Li Volti
Corresponding Email: livolti@unict.it
Keywords: Down Syndrome, oxidative stress, liver, aging
Click here to sign up for free Altmetric alerts about this article.
About Aging:
The journal Aging aims to promote 1) treatment of age-related diseases by slowing down aging, 2) validation of anti-aging drugs by treating age-related diseases, and 3) prevention of cancer by inhibiting aging. (Cancer and COVID-19 are age-related diseases.)
Aging is indexed by PubMed/Medline (abbreviated as “Aging (Albany NY)”), PubMed Central, Web of Science: Science Citation Index Expanded (abbreviated as “Aging‐US” and listed in the Cell Biology and Geriatrics & Gerontology categories), Scopus (abbreviated as “Aging” and listed in the Cell Biology and Aging categories), Biological Abstracts, BIOSIS Previews, EMBASE, META (Chan Zuckerberg Initiative) (2018-2022), and Dimensions (Digital Science).
Please visit our website at www.Aging-US.com and connect with us:
- X, formerly Twitter
- YouTube
- Spotify, and available wherever you listen to podcasts
Click here to subscribe to Aging publication updates.
For media inquiries, please contact media@impactjournals.com.
Aging (Aging-US) Journal Office
6666 E. Quaker Str., Suite 1
Orchard Park, NY 14127
Phone: 1-800-922-0957, option 1
###
Journal
Aging-US
Method of Research
Observational study
Subject of Research
Animals
Article Title
Aging exacerbates oxidative stress and liver fibrosis in an animal model of Down Syndrome
Article Publication Date
26-Jun-2024