Young Scientist Discovers Magnetic Material Unnecessary to Create Spin Current (IMAGE)
Caption
Research at Argonne indicates you don't need a magnetic material to create spin current from insulators -- has important implications for the field of spintronics and the development of high-speed, low-power electronics that use electron spin rather than charge to carry information.
ABOVE: Typically when referring to electrical current, an image of electrons moving through a metallic wire is conjured. Using the spin Seebeck effect (SSE), it is possible to create a current of pure spin (a quantum property of electrons related to its magnetic moment) in magnetic insulators. However, this work demonstrates that the SSE is not limited to magnetic insulators but also occurs in a class of materials known as paramagnets. Since magnetic moments within paramagnets do not interact with each other like in conventional ferromagnets, and thus do not hold their magnetization when an external magnetic field is removed, this discovery is unexpected and challenges current theories for the SSE. New ways of generating spin currents may be important for low-power high-speed spin based computing (spintronics), and is also an area of great fundamental interest. The paramagnetic SSE changes the way we think about thermally driven spintronics, allowing for the creation of new devices and architectures where spin currents are generated without ferromagnetic materials, which have been the centerpiece of all spin-based electronic devices up until this point.
Credit
Argonne National Laboratory
Usage Restrictions
With credit
License
Licensed content