<em>C. elegans</em> (IMAGE)
Caption
Left: How the ribozyme-based genetic switch works. A self-cleaving tetracycline-dependent ribozyme results in mRNA decay and down-regulation of gene expression. Adding tetracycline inhibits ribozyme activity, which stabilizes the mRNA and induces gene expression. Right: Application of the genetic switch in the animal research model C. elegans. Tetracycline-induced expression of the fluorescence (mCherry)-tagged Huntingtin protein (Htt) with an abnormally long polyglutamine sequence that causes Huntington's disease in humans. Htt aggregates, which are typical of Huntington's disease, can be observed to form in the animal model.
Credit
L. A. Wurmthaler, M. Gamerdinger, J. S. Hartig
Usage Restrictions
None
License
Licensed content