Seven researchers named to Battelle Distinguished Inventor cadre
Grant and Award Announcement
Updates every hour. Last Updated: 7-May-2025 22:09 ET (8-May-2025 02:09 GMT/UTC)
Berkeley Lab and several collaborating institutions have successfully demonstrated a machine-learning technique to accelerate discovery of materials for film capacitors — crucial components in electrification and renewable energy technologies. The technique was used to screen a library of nearly 50,000 chemical structures to identify a compound with record-breaking performance.
A team of scientists with two Department of Energy Bioenergy Research Centers — the Center for Bioenergy Innovation, or CBI, at Oak Ridge National Laboratory and the Center for Advanced Bioenergy and Bioproducts Innovation, or CABBI, at the University of Illinois Urbana-Champaign — identified a gene in a poplar tree that enhances photosynthesis and can boost tree height by about 30% in the field and by as much as 200% in the greenhouse.
Scientists have a new way to use data from high-energy particle smashups to peer inside protons. Their approach uses quantum information science to map out how particle tracks streaming from electron-proton collisions are influenced by quantum entanglement inside the proton. The results reveal that quarks and gluons, the fundamental building blocks that make up a proton’s structure, are subject to so-called quantum entanglement.
A chemical reaction can convert two polluting greenhouse gases into valuable building blocks for cleaner fuels and feedstocks, but the high temperature required for the reaction also deactivates the catalyst. A team led by the Department of Energy’s Oak Ridge National Laboratory has found a way to thwart deactivation. The strategy may apply broadly to other catalysts.